login
A280273
Primes p such that 8p^2 - 7p + 2 is also prime.
2
3, 5, 23, 41, 59, 113, 131, 173, 179, 269, 281, 383, 401, 431, 443, 449, 461, 479, 521, 641, 653, 863, 929, 941, 953, 1013, 1103, 1163, 1301, 1319, 1361, 1439, 1481, 1559, 1583, 1871, 2003, 2213, 2309, 2411, 2609, 2693, 2711, 2729, 2801, 2903, 2909, 2969, 3041
OFFSET
1,1
COMMENTS
For any p in this sequence, 2*p*(8p^2 - 7p + 2) has the same nonzero digits as its prime factors in base 2*p-1.
Apart from 3 itself, all members of this sequence are congruent to 2 (mod 3). This is because for any number congruent to 1 (mod 3), the expression (8n^2 - 7n + 2) would be a multiple of 3 and hence not prime.
MATHEMATICA
Select[Prime@ Range@ 450, PrimeQ[8 #^2 - 7 # + 2] &] (* Michael De Vlieger, Dec 30 2016 *)
PROG
(SageMath)
c=1
index=1
while(index<=1000):
if((is_prime(c))&(is_prime(8*(c**2)-7*c+2))):
print(str(index)+" "+str(c))
index+=1
c+=1
print("complete")
CROSSREFS
Sequence in context: A091157 A199336 A214876 * A036952 A065720 A148554
KEYWORD
nonn
AUTHOR
Ely Golden, Dec 30 2016
STATUS
approved