login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280270
Numbers n such that A278981(n) < 2*n^2.
4
6, 8, 12, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 108, 112, 116, 120, 126, 132, 140, 144, 148, 150, 156, 160, 162, 168, 174, 176, 180, 186, 188, 192, 196, 198, 200, 204, 210, 216, 220, 224, 230, 232, 234, 240
OFFSET
1,1
COMMENTS
All members of this sequence are even, as for any odd number m A278981(m) > m^3 + m^2 + m + 1 > 2*m^2.
It appears that, apart from 2, all members of A280236 appear in this sequence.
PROG
(SageMath)
def nonZeroDigits(x, n):
if(x<=0|n<2):
return []
li=[]
while(x>0):
d=divmod(x, n)
if(d[1]!=0):
li.append(d[1])
x=d[0]
li.sort()
return li;
def nonZeroFactorDigits(x, n):
if(x<=0|n<2):
return []
li=[]
f=list(factor(x))
#ensures inequality of nonZeroFactorDigits(x, n) and nonZeroDigits(x, n) if x is prime
if((len(f)==1)&(f[0][1]==1)):
return [];
for c in range(len(f)):
for d in range(f[c][1]):
ld=nonZeroDigits(f[c][0], n)
li+=ld
li.sort()
return li;
#the actual function
def a(n):
c=n**2+n+1
limit=2*(n**2)
if(n%2!=0):
return -1
while((nonZeroFactorDigits(c, n)!=nonZeroDigits(c, n))&(c<limit)):
c+=1;
if(c>=limit):
return -1
return c;
index=1
value=2
while(index<=1000):
result=a(value)
if(result!=-1):
print(str(index)+" "+str(value)+" "+str(result))
index+=1
value+=1
print("complete")
CROSSREFS
Sequence in context: A372011 A090259 A089241 * A368242 A315862 A315863
KEYWORD
nonn,base
AUTHOR
Ely Golden, Dec 30 2016
STATUS
approved