The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278981 a(n) is the first composite number having the same base-n digits as its prime factors (with multiplicity), excluding zero digits (or 0 if no such composite number exists). 6
 15, 399, 85, 318, 57, 906, 85, 1670, 1111, 18193, 185, 7205205, 4119, 63791, 4369, 1548502, 489, 258099, 451, 408166, 13315, 1012985, 679, 25841526, 26533, 2884373, 985, 49101338, 1057, 5362755, 1285, 2447558, 179503, 3091422, 1387, 5830693854, 82311, 149338, 2005 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS For an alternate program that only checks a single base at a time, use the code from "#the actual function (alternate)" instead of "#the actual function". The computation of a(n) is exceedingly inefficient, requiring the checking of all natural values less than a(n). A more efficient way to compute a(n) is very desirable. - Ely Golden, Dec 25 2016 There is a lower bound on a(n), if not 0, of n^2 + n + 1. As well, a(n) must have 3 or more nonzero digits in base n (if n is odd, this lower bound is n^3 + n^2 + n + 1, and a(n) must have 4 or more nonzero digits in base n). This does not significantly improve the computation of a(n), however. - Ely Golden, Dec 30 2016 The pattern in the magnitude of a(n) is unclear. For some values of n, a(n) is much larger than for other values. For example, a(65) is 2460678262, whereas a(64) is only 4369 and a(66) is 4577. It seems as though even values of n typically have smaller values of a(n). - Ely Golden, Dec 30 2016 It is known that a(n) > 0 for any nonzero member of this sequence, as well as any n >= 2 of the form A280270(m), A070689(m), A279480(m), 2*A089001(m), 2*A115104(m), and 2*A280273(m)-1. It is likely, but not known, that a(n) > 0 for all n >= 2. - Ely Golden, Dec 30 2016 LINKS Ely Golden, Table of n, a(n) for n = 2..72 (terms a(67), a(69), and a(71) computed by Chai Wah Wu) Ely Golden, Table of n, a(n) for n = 2..11584 (a-file, contains every value of a(n) <= 2^27) Ely Golden, Proofs regarding the lower bound of A278981(n) EXAMPLE a(2) = 15, as 15 is the first composite number whose base-2 nonzero digits (1111) are the same as the base-2 nonzero digits of its prime factors (11_2 and 101_2). MATHEMATICA g[n_] := g[n] = Flatten[ Table[#[], {#[]}] & /@ FactorInteger[n]]; f[b_] := Block[{c = b^2}, While[ PrimeQ@ c || DeleteCases[ Sort[ IntegerDigits[c, b]], 0] != DeleteCases[ Sort[ Flatten[ IntegerDigits[g[c], b]]], 0], c++]; c]; Array[f, 39, 2] (* Robert G. Wilson v, Dec 30 2016 *) PROG (SageMath) def nonZeroDigits(x, n):     if(x<=0|n<2):         return []     li=[]     while(x>0):         d=divmod(x, n)         if(d!=0):             li.append(d)         x=d     li.sort()     return li; def nonZeroFactorDigits(x, n):     if(x<=0|n<2):         return []     li=[]     f=list(factor(x))     #ensures inequality of nonZeroFactorDigits(x, n) and nonZeroDigits(x, n) if x is prime     if((len(f)==1)&(f==1)):         return [];     for c in range(len(f)):         for d in range(f[c]):             ld=nonZeroDigits(f[c], n)             li+=ld     li.sort()     return li; #the actual function def a(n):     c=2     while(nonZeroFactorDigits(c, n)!=nonZeroDigits(c, n)):         c+=1;     return c; index=2 while(index<=100):     print(str(index)+" "+str(a(index)))     index+=1 print("complete") #the actual function (alternate) def a(n):     c=2     while(nonZeroFactorDigits(c, n)!=nonZeroDigits(c, n)):         c+=1;         if(c%1000000==1):             print("checked up to "+str(c-1))     return c; x=3 # print(str(x)+" "+str(a(x))) print("complete") CROSSREFS a(10) = A176670(1); a(2) = A278909(1). Sequence in context: A143001 A250950 A323838 * A279133 A034675 A216343 Adjacent sequences:  A278978 A278979 A278980 * A278982 A278983 A278984 KEYWORD nonn,base AUTHOR Ely Golden, Dec 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 22:13 EDT 2022. Contains 353959 sequences. (Running on oeis4.)