login
A279480
Numbers n such that n+1 and n^4+1 are primes.
2
1, 2, 4, 6, 16, 28, 46, 82, 88, 106, 180, 198, 210, 228, 238, 276, 312, 352, 430, 442, 466, 498, 540, 556, 568, 600, 616, 690, 732, 738, 742, 760, 768, 772, 786, 810, 856, 928, 936, 952, 966, 996, 1038, 1150, 1152
OFFSET
1,2
COMMENTS
For any n > 1 in this sequence, (n+1)*(n^4+1) has the same nonzero digits as its prime factors in base n. - Ely Golden, Dec 12 2016
FORMULA
a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 13 2016
MATHEMATICA
Select[Range@ 2000, Times @@ Boole@ Map[PrimeQ, {# + 1, #^4 + 1}] == 1 &] (* Michael De Vlieger, Dec 13 2016 *)
Select[Range[2000], AllTrue[1+{#, #^4}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 13 2019 *)
PROG
(SageMath)
c=1
index=1
while(index<=1000):
if((is_prime(c+1))&(is_prime(c**4+1))):
print(str(index)+" "+str(c))
index+=1
c+=1
print("complete")
(PARI) list(lim)=my(v=List()); forprime(p=2, lim+1, if(isprime(1+(p-1)^4), listput(v, p-1))); Vec(v) \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
Cf. A070689 (the similar sequence for n+1 and n^2+1)
Sequence in context: A162580 A098426 A365639 * A363785 A045665 A133492
KEYWORD
nonn
AUTHOR
Ely Golden, Dec 12 2016
STATUS
approved