login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280275
Number of set partitions of [n] where sizes of distinct blocks are coprime.
3
1, 1, 2, 5, 12, 37, 118, 387, 1312, 4445, 17034, 73339, 342532, 1616721, 7299100, 31195418, 129179184, 578924785, 3057167242, 18723356715, 120613872016, 738703713245, 4080301444740, 20353638923275, 95273007634552, 443132388701107, 2149933834972928
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A280880(n,k).
EXAMPLE
a(n) = A000110(n) for n<=3.
a(4) = 12: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 37: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
MAPLE
with(numtheory):
b:= proc(n, i, s) option remember;
`if`(n=0 or i=1, 1, b(n, i-1, select(x->x<=i-1, s))+
`if`(i>n or factorset(i) intersect s<>{}, 0, b(n-i, i-1,
select(x->x<=i-1, s union factorset(i)))*binomial(n, i)))
end:
a:= n-> b(n$2, {}):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, s_] := b[n, i, s] = Expand[If[n==0 || i==1, x^n, b[n, i-1, Select[s, # <= i-1&]] + If[i>n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n-i, i-1, Select[s ~Union~ FactorInteger[i][[All, 1]], # <= i-1&]]*Binomial[n, i]]]];
a[n_] := b[n, n, {}] // CoefficientList[#, x]& // Total;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
CROSSREFS
Row sums of A280880.
Sequence in context: A267400 A363064 A052302 * A009598 A355861 A002216
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 30 2016
STATUS
approved