Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 23 2017 04:15:51
%S 1,1,2,5,12,37,118,387,1312,4445,17034,73339,342532,1616721,7299100,
%T 31195418,129179184,578924785,3057167242,18723356715,120613872016,
%U 738703713245,4080301444740,20353638923275,95273007634552,443132388701107,2149933834972928
%N Number of set partitions of [n] where sizes of distinct blocks are coprime.
%H Alois P. Heinz, <a href="/A280275/b280275.txt">Table of n, a(n) for n = 0..500</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Coprime_integers">Coprime integers</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F a(n) = Sum_{k=0..n} A280880(n,k).
%e a(n) = A000110(n) for n<=3.
%e a(4) = 12: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
%e a(5) = 37: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
%p with(numtheory):
%p b:= proc(n, i, s) option remember;
%p `if`(n=0 or i=1, 1, b(n, i-1, select(x->x<=i-1, s))+
%p `if`(i>n or factorset(i) intersect s<>{}, 0, b(n-i, i-1,
%p select(x->x<=i-1, s union factorset(i)))*binomial(n, i)))
%p end:
%p a:= n-> b(n$2, {}):
%p seq(a(n), n=0..30);
%t b[n_, i_, s_] := b[n, i, s] = Expand[If[n==0 || i==1, x^n, b[n, i-1, Select[s, # <= i-1&]] + If[i>n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n-i, i-1, Select[s ~Union~ FactorInteger[i][[All, 1]], # <= i-1&]]*Binomial[n, i]]]];
%t a[n_] := b[n, n, {}] // CoefficientList[#, x]& // Total;
%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 23 2017, translated from Maple *)
%Y Cf. A000110, A007837, A275313.
%Y Row sums of A280880.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Dec 30 2016