login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355861
G.f. A(x) satisfies: 0 = Sum_{n=-oo..+oo} x^(n*(n-1)/2) * (x^n - A(x))^n.
2
1, 2, 5, 12, 37, 121, 419, 1510, 5604, 21261, 82110, 321662, 1275077, 5104886, 20611814, 83834609, 343164051, 1412600336, 5843868040, 24283650452, 101312783192, 424212909937, 1782086178267, 7508852850710, 31725558330499, 134381573170076, 570532128884181
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 0 = Sum_{n=-oo..+oo} x^(n*(n-1)/2) * (x^n - A(x))^n.
(2) 0 = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) / (1 - A(x)*x^n)^n.
a(n) ~ c * d^n / n^(3/2), where d = 4.4984524719254844098592086179118472526... and c = 0.813659600743159302516036718242855... - Vaclav Kotesovec, Jul 23 2022
A(1/d) = 2.6481605623378565... where 1/d = 0.2222986696516029605295343... and d is the value given above by Vaclav Kotesovec. - Paul D. Hanna, Jul 28 2022
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 12*x^3 + 37*x^4 + 121*x^5 + 419*x^6 + 1510*x^7 + 5604*x^8 + 21261*x^9 + 82110*x^10 + 321662*x^11 + ...
where
0 = ... + x^6/(1/x^3 - A(x))^3 + x^3/(1/x^2 - A(x))^2 + x/(1/x - A(x)) + 1 + (x - A(x)) + x*(x^2 - A(x))^2 + x^3*(x^3 - A(x))^3 + x^6*(x^4 - A(x))^4 + ... + x^(n*(n-1)/2)*(x^n - A(x))^n + ...
Specific values.
A(0.20604788...) = 2.
A(1/5) = 1.9097493689592466...
PROG
(PARI) {a(n) = my(A=[1], M); for(i=1, n, A=concat(A, 0); M = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( sum(m=-M, M, x^(m*(m-1)/2) * (x^m - Ser(A))^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A052302 A280275 A009598 * A002216 A024717 A003724
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 22 2022
STATUS
approved