OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..400
FORMULA
G.f. A(x) satisfies:
(1) 0 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * (x^n - 2*A(x))^(n+1).
(2) 0 = Sum_{n=-oo..+oo} x^(n*(3*n-1)/2) / (1 - 2*A(x)*x^n)^(n-1).
a(n) ~ c * d^n / n^(3/2), where d = 6.74709799536602052858389740164829219437... and c = 0.517304287814827280375970612560243586... - Vaclav Kotesovec, Jul 23 2022
A(1/d) = 2.022729610323037319... where 1/d = 0.148211868374642... and d is the value given above by Vaclav Kotesovec. - Paul D. Hanna, Jul 30 2022
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 25*x^3 + 112*x^4 + 557*x^5 + 2914*x^6 + 15837*x^7 + 88531*x^8 + 505581*x^9 + 2936676*x^10 + 17294352*x^11 + ...
where
0 = ... + x^6/(1/x^4 - 2*A(x))^3+ x^3/(1/x^3 - 2*A(x))^2 + x/(1/x^2 - 2*A(x)) + 1 + (1 - 2*A(x)) + x*(x - 2*A(x))^2 + x^3*(x^2 - 2*A(x))^3 + x^6*(x^3 - A(x))^4 + ... + x^(n*(n+1)/2)*(x^n - 2*A(x))^(n+1) + ...
Specific values.
A(0.148188601...) = 2.
A(1/7) = 1.72240285856328...
PROG
(PARI) {a(n) = my(A=[1], M); for(i=1, n, A=concat(A, 0); M = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( sum(m=-M, M, x^(m*(m+1)/2) * (x^m - 2*Ser(A))^(m+1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 22 2022
STATUS
approved