login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355862
G.f. A(x) satisfies: 0 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * (x^n - 2*A(x))^(n+1).
1
1, 2, 6, 25, 112, 557, 2914, 15837, 88531, 505581, 2936676, 17294352, 103018292, 619595991, 3757342674, 22948207189, 141033508661, 871527612640, 5412015056754, 33754524947592, 211353845133650, 1328099943458743, 8372466442163468, 52936608451071755
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 0 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * (x^n - 2*A(x))^(n+1).
(2) 0 = Sum_{n=-oo..+oo} x^(n*(3*n-1)/2) / (1 - 2*A(x)*x^n)^(n-1).
a(n) ~ c * d^n / n^(3/2), where d = 6.74709799536602052858389740164829219437... and c = 0.517304287814827280375970612560243586... - Vaclav Kotesovec, Jul 23 2022
A(1/d) = 2.022729610323037319... where 1/d = 0.148211868374642... and d is the value given above by Vaclav Kotesovec. - Paul D. Hanna, Jul 30 2022
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 25*x^3 + 112*x^4 + 557*x^5 + 2914*x^6 + 15837*x^7 + 88531*x^8 + 505581*x^9 + 2936676*x^10 + 17294352*x^11 + ...
where
0 = ... + x^6/(1/x^4 - 2*A(x))^3+ x^3/(1/x^3 - 2*A(x))^2 + x/(1/x^2 - 2*A(x)) + 1 + (1 - 2*A(x)) + x*(x - 2*A(x))^2 + x^3*(x^2 - 2*A(x))^3 + x^6*(x^3 - A(x))^4 + ... + x^(n*(n+1)/2)*(x^n - 2*A(x))^(n+1) + ...
Specific values.
A(0.148188601...) = 2.
A(1/7) = 1.72240285856328...
PROG
(PARI) {a(n) = my(A=[1], M); for(i=1, n, A=concat(A, 0); M = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( sum(m=-M, M, x^(m*(m+1)/2) * (x^m - 2*Ser(A))^(m+1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A199241 A366236 A276277 * A299098 A229042 A269484
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 22 2022
STATUS
approved