Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jul 30 2022 15:38:12
%S 1,2,6,25,112,557,2914,15837,88531,505581,2936676,17294352,103018292,
%T 619595991,3757342674,22948207189,141033508661,871527612640,
%U 5412015056754,33754524947592,211353845133650,1328099943458743,8372466442163468,52936608451071755
%N G.f. A(x) satisfies: 0 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * (x^n - 2*A(x))^(n+1).
%H Paul D. Hanna, <a href="/A355862/b355862.txt">Table of n, a(n) for n = 0..400</a>
%F G.f. A(x) satisfies:
%F (1) 0 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * (x^n - 2*A(x))^(n+1).
%F (2) 0 = Sum_{n=-oo..+oo} x^(n*(3*n-1)/2) / (1 - 2*A(x)*x^n)^(n-1).
%F a(n) ~ c * d^n / n^(3/2), where d = 6.74709799536602052858389740164829219437... and c = 0.517304287814827280375970612560243586... - _Vaclav Kotesovec_, Jul 23 2022
%F A(1/d) = 2.022729610323037319... where 1/d = 0.148211868374642... and d is the value given above by _Vaclav Kotesovec_. - _Paul D. Hanna_, Jul 30 2022
%e G.f.: A(x) = 1 + 2*x + 6*x^2 + 25*x^3 + 112*x^4 + 557*x^5 + 2914*x^6 + 15837*x^7 + 88531*x^8 + 505581*x^9 + 2936676*x^10 + 17294352*x^11 + ...
%e where
%e 0 = ... + x^6/(1/x^4 - 2*A(x))^3+ x^3/(1/x^3 - 2*A(x))^2 + x/(1/x^2 - 2*A(x)) + 1 + (1 - 2*A(x)) + x*(x - 2*A(x))^2 + x^3*(x^2 - 2*A(x))^3 + x^6*(x^3 - A(x))^4 + ... + x^(n*(n+1)/2)*(x^n - 2*A(x))^(n+1) + ...
%e Specific values.
%e A(0.148188601...) = 2.
%e A(1/7) = 1.72240285856328...
%o (PARI) {a(n) = my(A=[1],M); for(i=1,n, A=concat(A,0); M = ceil(sqrt(2*(#A)+9));
%o A[#A] = polcoeff( sum(m=-M,M, x^(m*(m+1)/2) * (x^m - 2*Ser(A))^(m+1) ), #A-1)/2);A[n+1]}
%o for(n=0,30,print1(a(n),", "))
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 22 2022