login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258708
Triangle read by rows: T(i,j) = integer part of binomial(i+j, i-j)/(2*j+1) for i >= 1 and j = 0..i-1.
17
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 4, 1, 1, 7, 14, 12, 5, 1, 1, 9, 25, 30, 18, 6, 1, 1, 12, 42, 66, 55, 26, 7, 1, 1, 15, 66, 132, 143, 91, 35, 8, 1, 1, 18, 99, 245, 334, 273, 140, 45, 9, 1, 1, 22, 143, 429, 715, 728, 476, 204, 57, 10, 1
OFFSET
1,5
COMMENTS
In the Loh-Shannon-Horadam paper, Table 3 contains a typo (see Extensions lines).
T(n,k) = round(A258993(n,k)/(2*k+1)). - Reinhard Zumkeller, Jun 22 2015
From Reinhard Zumkeller, Jun 23 2015: (Start)
(using tables 4 and 5 of the Loh-Shannon-Horadam paper, p. 8f).
T(n, n-1) = 1;
T(n, n-2) = n for n > 1;
T(n, n-3) = A000969(n-3) for n > 2;
T(n, n-4) = A000330(n-3) for n > 3;
T(n, n-5) = T(2*n-7, 2) = A000970(n) for n > 4;
T(n, n-6) = A000971(n) for n > 5;
T(n, n-7) = A000972(n) for n > 6;
T(n, n-8) = A000973(n) for n > 7;
T(n, 1) = A001840(n-1) for n > 1;
T(2*n, n) = A001764(n);
T(3*n-1, 1) = A000326(n);
T(3*n, 2*n) = A002294(n);
T(4*n, 3*n) = A002296(n). (End)
LINKS
R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
EXAMPLE
Triangle T(i, j) (with rows i >= 1 and columns j >= 0) begins as follows:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 5, 7, 4, 1;
1, 7, 14, 12, 5, 1;
1, 9, 25, 30, 18, 6, 1;
1, 12, 42, 66, 55, 26, 7, 1;
1, 15, 66, 132, 143, 91, 35, 8, 1;
1, 18, 99, 245, 334, 273, 140, 45, 9, 1;
...
PROG
(Haskell)
a258708 n k = a258708_tabl !! (n-1) !! k
a258708_row n = a258708_tabl !! (n-1)
a258708_tabl = zipWith (zipWith ((round .) . ((/) `on` fromIntegral)))
a258993_tabl a158405_tabl
-- Reinhard Zumkeller, Jun 22 2015, Jun 16 2015
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 12 2015
EXTENSIONS
Corrected T(8,5) = 26 from Reinhard Zumkeller, Jun 13 2015
STATUS
approved