OFFSET
1,5
COMMENTS
In the Loh-Shannon-Horadam paper, Table 3 contains a typo (see Extensions lines).
T(n,k) = round(A258993(n,k)/(2*k+1)). - Reinhard Zumkeller, Jun 22 2015
From Reinhard Zumkeller, Jun 23 2015: (Start)
(using tables 4 and 5 of the Loh-Shannon-Horadam paper, p. 8f).
T(n, n-1) = 1;
T(n, n-2) = n for n > 1;
T(n, n-3) = A000969(n-3) for n > 2;
T(n, n-4) = A000330(n-3) for n > 3;
T(n, n-5) = T(2*n-7, 2) = A000970(n) for n > 4;
T(n, n-6) = A000971(n) for n > 5;
T(n, n-7) = A000972(n) for n > 6;
T(n, n-8) = A000973(n) for n > 7;
T(n, 1) = A001840(n-1) for n > 1;
T(2*n, n) = A001764(n);
T(3*n-1, 1) = A000326(n);
T(3*n, 2*n) = A002294(n);
T(4*n, 3*n) = A002296(n). (End)
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
EXAMPLE
Triangle T(i, j) (with rows i >= 1 and columns j >= 0) begins as follows:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 5, 7, 4, 1;
1, 7, 14, 12, 5, 1;
1, 9, 25, 30, 18, 6, 1;
1, 12, 42, 66, 55, 26, 7, 1;
1, 15, 66, 132, 143, 91, 35, 8, 1;
1, 18, 99, 245, 334, 273, 140, 45, 9, 1;
...
PROG
(Haskell)
a258708 n k = a258708_tabl !! (n-1) !! k
a258708_row n = a258708_tabl !! (n-1)
a258708_tabl = zipWith (zipWith ((round .) . ((/) `on` fromIntegral)))
a258993_tabl a158405_tabl
-- Reinhard Zumkeller, Jun 22 2015, Jun 16 2015
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 12 2015
EXTENSIONS
Corrected T(8,5) = 26 from Reinhard Zumkeller, Jun 13 2015
STATUS
approved