login
A258705
Orders of groups in chain of subgroups of Conway's group Co_0 arising from complete graphs.
1
24, 336, 12096, 1209600, 503193600, 2690072985600, 8315553613086720000
OFFSET
1,1
REFERENCES
J. H. Conway. A group of order 8,315,553,613,086,70,000. Bull. London Math. Soc., 1 pp. 79-88 (1969).
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
R. T. Curtis, Symmetric generation of groups, with application to many of the sporadic finite simple groups. Cambridge University Press (2007).
R. T. Curtis, The Thompson chain of subgroups of the Conway group Co_1 and complete graphs on n vertices, preprint, 2015. [The source for this sequence]
EXAMPLE
Terms 3 through 7 refer to the groups U_3(3):2, HJ:2, G_2(4):2, 3·Suz:2, 2×Co_1.
The first two terms, 24 (S_4 from K_1) and 336 (L(2,7):2 from K_2) are somewhat special but are included for completeness.
CROSSREFS
Cf. A258704.
Sequence in context: A267838 A045543 A125459 * A264454 A077527 A083766
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Jun 09 2015
STATUS
approved