login
A258704
Orders of groups in the Thompson chain of subgroups of the Conway simple group Co_1.
1
1088640, 483840, 846720, 4354560, 72576000, 6038323200, 2690072985600, 4157776806543360000
OFFSET
1,1
COMMENTS
Note that this is not monotonic.
REFERENCES
J. H. Conway. A group of order 8,315,553,613,086,70,000. Bull. London Math. Soc., 1 pp. 79-88 (1969).
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. See page 183.
R. T. Curtis, Symmetric generation of groups, with application to many of the sporadic finite simple groups. Cambridge University Press (2007).
R. T. Curtis, The Thompson chain of subgroups of the Conway group Co_1 and complete graphs on n vertices, preprint, 2015.
EXAMPLE
The groups are A_9 X S_3, A_8 X S_4, (A_7 X L_2(7)):2, (A_6 X U_3(3)):2, (A_5 X HJ):2, (A_4 X G_2(4)):2, 3·Suz:2.
CROSSREFS
Cf. A258705.
Sequence in context: A253467 A340132 A340405 * A224592 A252119 A109148
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Jun 09 2015
STATUS
approved