Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jun 14 2024 22:31:10
%S 1088640,483840,846720,4354560,72576000,6038323200,2690072985600,
%T 4157776806543360000
%N Orders of groups in the Thompson chain of subgroups of the Conway simple group Co_1.
%C Note that this is not monotonic.
%D J. H. Conway. A group of order 8,315,553,613,086,70,000. Bull. London Math. Soc., 1 pp. 79-88 (1969).
%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. See page 183.
%D R. T. Curtis, Symmetric generation of groups, with application to many of the sporadic finite simple groups. Cambridge University Press (2007).
%D R. T. Curtis, The Thompson chain of subgroups of the Conway group Co_1 and complete graphs on n vertices, preprint, 2015.
%e The groups are A_9 X S_3, A_8 X S_4, (A_7 X L_2(7)):2, (A_6 X U_3(3)):2, (A_5 X HJ):2, (A_4 X G_2(4)):2, 3·Suz:2.
%Y Cf. A258705.
%K nonn,fini,full
%O 1,1
%A _N. J. A. Sloane_, Jun 09 2015