login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000971
Fermat coefficients.
(Formerly M4623 N1975)
2
1, 9, 42, 132, 334, 728, 1428, 2584, 4389, 7084, 10963, 16380, 23751, 33563, 46376, 62832, 83657, 109668, 141778, 181001, 228459, 285384, 353127, 433160, 527085, 636636, 763686, 910252, 1078500, 1270752, 1489488, 1737355, 2017169, 2331924
OFFSET
6,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
P. A. Piza, Fermat coefficients, Math. Mag., 27 (1954), 141-146.
Index entries for linear recurrences with constant coefficients, signature (6,-15,19,-9,-9,18,-9,-9,19,-15,6,-1).
FORMULA
G.f.: (1 + 3x + 3x^7 + x^8 + 3x^2 - 4x^3 + 10x^4 - 4x^5 + 3x^6)/(x^6 + x^3 + 1)/(-1+x)^6 (see MAPLE line).
a(n) = A258708(n,n-6). - Reinhard Zumkeller, Jun 23 2015
MAPLE
(1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(-1+z)^6;
MATHEMATICA
CoefficientList[Series[(1+3*x+3*x^7+x^8+3*x^2-4*x^3+10*x^4-4*x^5+3*x^6)/(x^6+x^3+1)/(-1+x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 28 2012 *)
PROG
(PARI) Vec((1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(z-1)^6+O(x^99)) \\ Charles R Greathouse IV, Mar 28 2012
(Haskell)
a000971 n = a258708 n (n - 6) -- Reinhard Zumkeller, Jun 23 2015
CROSSREFS
Cf. A258708.
Sequence in context: A172464 A269053 A027441 * A061927 A292481 A051923
KEYWORD
nonn,easy
EXTENSIONS
More terms from Sean A. Irvine, Sep 25 2011
STATUS
approved