login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292481
p-INVERT of the odd positive integers, where p(S) = 1 - S^3.
1
0, 0, 1, 9, 42, 139, 381, 984, 2685, 8061, 25434, 79695, 242577, 721584, 2131785, 6333633, 18984618, 57194883, 172319157, 517851144, 1552599333, 4651054101, 13939132698, 41810229351, 125475990057, 376585031520, 1129975049169, 3389800055481, 10168040440746
OFFSET
0,4
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.
FORMULA
G.f.: -((x^2 (1 + x)^3)/((-1 + 3 x) (1 - 3 x + 6 x^2 - 3 x^3 + 3 x^4))).
a(n) = 6*a(n-1) - 25*a(n-2) + 21*a(n-3) - 12*a(n-4) + 9*a(n-5) for n >= 6.
MATHEMATICA
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292481 *)
LinearRecurrence[{6, -15, 21, -12, 9}, {0, 0, 1, 9, 42, 139}, 30] (* Harvey P. Dale, Jun 06 2024 *)
CROSSREFS
Sequence in context: A027441 A000971 A061927 * A051923 A180670 A268262
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 02 2017
STATUS
approved