login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292478
p-INVERT of A010892, where p(S) = 1 - S - S^3.
1
1, 2, 4, 9, 19, 36, 66, 127, 256, 513, 998, 1916, 3717, 7311, 14396, 28134, 54719, 106624, 208577, 408426, 798340, 1558049, 3041323, 5942916, 11618026, 22703871, 44346624, 86617729, 169226638, 330675804, 646109597, 1262265767, 2465931324, 4817687118
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
FORMULA
G.f.: (1 - 2 x + 4 x^2 - 2 x^3 + x^4)/(1 - 4 x + 8 x^2 - 11 x^3 + 8 x^4 - 4 x^5 + x^6).
a(n) = 4*a(n-1) - 8*a(n-2) + 11*a(n-3) - 8*a(n-4) + 4*a(n-5) - a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x/(1 - x + x^2); p = 1 - s - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A010892 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292478 *)
LinearRecurrence[{4, -8, 11, -8, 4, -1}, {1, 2, 4, 9, 19, 36}, 40] (* Vincenzo Librandi, Oct 01 2017 *)
PROG
(Magma) I:=[1, 2, 4, 9, 19, 36]; [n le 6 select I[n] else 4*Self(n-1)-8*Self(n-2)+11*Self(n-3)-8*Self(n-4)+4*Self(n-5)-Self(n-6): n in [1..35]]; // Vincenzo Librandi, Oct 01 2017
CROSSREFS
Cf. A010892.
Sequence in context: A331850 A373808 A081490 * A309267 A262864 A129784
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 30 2017
STATUS
approved