login
A292476
Number of solutions to +-1 +- 3 +- 5 +- 7 +- ... +- (4*n-1) = 0.
9
1, 0, 2, 2, 8, 20, 68, 206, 692, 2306, 7930, 27492, 96792, 343670, 1231932, 4447510, 16164914, 59086618, 217091832, 801247614, 2969432270, 11045446688, 41224168020, 154329373022, 579377940390, 2180684278698, 8227240466520, 31107755899600
OFFSET
0,3
FORMULA
Constant term in the expansion of Product_{k=1..2*n} (x^(2*k-1)+1/x^(2*k-1)).
a(n) = 2*A156700(n) for n > 0.
EXAMPLE
For n=2 the 2 solutions are +1-3-5+7 = 0 and -1+3+5-7 = 0.
For n=3 the 2 solutions are +1+3+5-7+9-11 = 0 and -1-3-5+7-9+11 = 0.
MATHEMATICA
a[n_] := SeriesCoefficient[Product[x^(2k - 1) + 1/x^(2k - 1), {k, 1, 2n}], {x, 0, 0}];
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 10 2023 *)
PROG
(PARI) {a(n) = polcoeff(prod(k=1, 2*n, x^(2*k-1)+1/x^(2*k-1)), 0)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 17 2017
STATUS
approved