login
A379869
a(n) is the least number whose cube is an n-digit cube which has the maximum sum of digits (A373727(n)).
6
2, 4, 9, 19, 31, 92, 157, 423, 927, 1966, 4289, 8782, 12599, 30355, 99829, 215083, 341075, 989353, 2131842, 4081435, 8334082, 20632999, 43967926, 88316866, 190349299, 365830423, 735501679, 1948602829, 3036548692, 9654499999, 17087193298, 31037622999, 99594689449, 181610950229, 462575139319, 956829383603
OFFSET
1,1
EXAMPLE
a(7) = 157 because among all 7-digit cubes, 157^3=3869893 is the smallest cube (another 2 larger cubes are 199^3=7880599, 208^3=8998912) who has the maximum sum of digits, 46 = A373727(7).
MATHEMATICA
Table[t =SortBy[Map[{#, Total@IntegerDigits[#^3]} &,
Range[Ceiling@CubeRoot[10^(n - 1)], CubeRoot[10^n - 1]]], Last];
Select[t, #[[2]] == t[[-1]][[2]] &][[1, 1]], {n, 18}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zhining Yang, Jan 11 2025
STATUS
approved