login
A379867
E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^2) - x*A(x)^2).
4
1, 2, 23, 529, 18589, 884281, 53195407, 3874595089, 331580316473, 32614443047521, 3625839880813171, 449629404853604185, 61535275741655857621, 9213155228282408405185, 1498018121369750569371959, 262869047482982449625840161, 49515850496472530668242845041
OFFSET
0,2
FORMULA
E.g.f.: sqrt( (1/x) * Series_Reversion( x * (exp(-x) - x)^2 ) ).
a(n) = n! * Sum_{k=0..n} (3*n-k+1)^(k-1) * binomial(3*n-k+1,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (3*n-k+1)^(k-1)*binomial(3*n-k+1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 04 2025
STATUS
approved