This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090314 a(n) = 23a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23. 1
 2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n+1)/a(n) converges to (23+sqrt(533))/2 =23.04339638... Lim a(n)/a(n+1) as n approaches infinity = 0.04339638... = 2/(23+sqrt(533)) = (sqrt(533)-23)/2. Lim a(n+1)/a(n) as n approaches infinity = 23.04339638... = (23+sqrt(533))/2 = 2/(sqrt(533)-23). LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (23, 1). FORMULA a(n) =23a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23. a(n) = ((23+sqrt(533))/2)^n + ((23-sqrt(533))/2)^n, (a(n))^2 =a(2n)-2 if n=1, 3, 5..., (a(n))^2 =a(2n)+2 if n=2, 4, 6.... G.f.: (2-23x)/(1-23x-x^2). [From Philippe Deléham, Nov 02 2008] EXAMPLE a(4)=281959= 23a(3) + a(2) = 23*12236+ 531=((23+sqrt(533))/2)^4 + ((23-sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959. MATHEMATICA LinearRecurrence[{23, 1}, {2, 23}, 20] (* Harvey P. Dale, Jul 11 2014 *) CROSSREFS Cf. A089141, A051502. Sequence in context: A167417 A053161 A090731 * A084322 A073062 A015098 Adjacent sequences:  A090311 A090312 A090313 * A090315 A090316 A090317 KEYWORD easy,nonn AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004 EXTENSIONS More terms from Ray Chandler, Feb 14 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 18:50 EDT 2018. Contains 315270 sequences. (Running on oeis4.)