login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330767
a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.
12
2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
OFFSET
0,1
FORMULA
a(n) = ( (25 + sqrt(629))^n + (25 - sqrt(629))^n )/2^n.
G.f.: (2 - 25*x)/(1-25*x-x^2).
a(n) = Lucas(n, 25) = 2*(-i)^n * ChebyshevT(n, 25*i/2).
MAPLE
seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
MATHEMATICA
LucasL[Range[25] -1, 25]
PROG
(PARI) vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
(Magma) I:=[2, 25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
(Sage) [2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
(GAP) a:=[2, 25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
CROSSREFS
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), this sequence (m=25).
Sequence in context: A121252 A322727 A090733 * A197084 A366038 A337153
KEYWORD
nonn,easy
AUTHOR
G. C. Greubel, Dec 29 2019
STATUS
approved