login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330765
Total number of blocks in all set partitions of strict integer partitions of n.
2
0, 1, 1, 4, 4, 7, 17, 20, 30, 43, 90, 103, 160, 210, 304, 515, 646, 894, 1223, 1659, 2176, 3484, 4226, 5873, 7638, 10335, 13150, 17695, 24974, 31394, 41383, 53766, 69718, 89573, 115613, 146344, 201625, 247880, 322099, 406445, 524634, 654298, 839584, 1043012
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=1..A003056(n)} k * A330460(n,k).
a(n) = Sum_{k=1..A003056(n)} k * A330759(n,k).
MAPLE
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, k, b(n, i-1, k)+(t-> b(n-i, t, k)*k
+b(n-i, t, k+1))(min(n-i, i-1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, k, b[n, i-1, k] + b[n-i, #, k] k + b[n-i, #, k+1]&[Min[n-i, i-1]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 50] (* Jean-François Alcover, May 08 2020, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 29 2019
STATUS
approved