login
A330768
a(n) is the number of divisors d of A014574(n) such that A014574(n)+d-1 and A014574(n)+d+1 are primes.
2
1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 4, 2, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 1, 1, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 0, 3, 1, 1, 0, 0, 3, 2, 2, 1, 1, 0, 2, 2, 3, 0, 1, 1, 1, 2, 0, 0, 0, 0, 1
OFFSET
1,13
LINKS
EXAMPLE
A014574(13) = 180. Four of its divisors yield twin prime pairs when added to 179 and 181, namely 12, 18, 60 and 90, as 179+12=191, 181+12=193, 179+18=197, 181+18=199, 179+50=239, 181+60=241, 179+90=269 and 181+90=271 are prime. Thus a(13)=4.
MAPLE
f:= proc(n)
nops(select(t -> isprime(n+t) and isprime(n+2+t), numtheory:-divisors(n+1)))
end proc:
P:= select(isprime, {seq(i, i=3..50000, 2)}):
TP:= sort(convert(P intersect map(`-`, P, 2), list)):
map(f, TP);
CROSSREFS
Cf. A014574.
Sequence in context: A277767 A107088 A137986 * A093486 A259618 A377036
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 29 2019
STATUS
approved