login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330768
a(n) is the number of divisors d of A014574(n) such that A014574(n)+d-1 and A014574(n)+d+1 are primes.
2
1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 4, 2, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 1, 1, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 0, 3, 1, 1, 0, 0, 3, 2, 2, 1, 1, 0, 2, 2, 3, 0, 1, 1, 1, 2, 0, 0, 0, 0, 1
OFFSET
1,13
LINKS
EXAMPLE
A014574(13) = 180. Four of its divisors yield twin prime pairs when added to 179 and 181, namely 12, 18, 60 and 90, as 179+12=191, 181+12=193, 179+18=197, 181+18=199, 179+50=239, 181+60=241, 179+90=269 and 181+90=271 are prime. Thus a(13)=4.
MAPLE
f:= proc(n)
nops(select(t -> isprime(n+t) and isprime(n+2+t), numtheory:-divisors(n+1)))
end proc:
P:= select(isprime, {seq(i, i=3..50000, 2)}):
TP:= sort(convert(P intersect map(`-`, P, 2), list)):
map(f, TP);
CROSSREFS
Cf. A014574.
Sequence in context: A277767 A107088 A137986 * A093486 A259618 A377036
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 29 2019
STATUS
approved