login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330770 a(n) = 19 * 8^n + 17 for n >= 0. 2
36, 169, 1233, 9745, 77841, 622609, 4980753, 39845905, 318767121, 2550136849, 20401094673, 163208757265, 1305670058001, 10445360463889, 83562883710993, 668503069687825, 5348024557502481, 42784196460019729, 342273571680157713, 2738188573441261585 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This sequence is the subject of the 4th problem of the 12th British Mathematical Olympiad in 1976 (see the link BMO).

Proposition: a(n) is never a prime number.

Proof:

If n is even, 3 divides a(n),

if n is odd with n = 4*k+1, 13 divides a(n), and

if n is odd with n = 4*k+3,  5 divides a(n).

REFERENCES

A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 4 pp. 70 and 216-217 (1991).

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

British Mathematical Olympiad, 1976 - Problem 4

Index to sequences related to Olympiads

Index entries for linear recurrences with constant coefficients, signature (9,-8).

FORMULA

a(n) = 19 * A001018(n) + 17.

From Colin Barker, Feb 25 2020: (Start)

G.f.: (36 - 155*x) / ((1 - x)*(1 - 8*x)).

a(n) = 9*a(n-1) - 8*a(n-2) for n>1.

(End)

E.g.f.: exp(x)*(17 + 19*exp(7*x)). - Stefano Spezia, Feb 25 2020

EXAMPLE

a(4) = 19 * 8^4 + 17 = 77841 = 3 * 25947.

a(5) = 19 * 8^5 + 17 = 622609 = 13 * 47893.

a(7) = 19 * 8^7 + 17 = 39845905 = 5 * 7969181.

MAPLE

B:=seq(19*8^n+17, n=0..40);

MATHEMATICA

Table[19 * 8^n + 17, {n, 0, 19}] (* Amiram Eldar, Feb 23 2020 *)

PROG

(PARI) Vec((36 - 155*x) / ((1 - x)*(1 - 8*x)) + O(x^20)) \\ Colin Barker, Feb 25 2020

CROSSREFS

Cf. A001018 (8^n).

Sequence in context: A268905 A017054 A231972 * A166708 A211731 A211742

Adjacent sequences:  A330767 A330768 A330769 * A330771 A330772 A330773

KEYWORD

nonn,easy

AUTHOR

Bernard Schott, Feb 23 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 22:30 EDT 2021. Contains 343936 sequences. (Running on oeis4.)