login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330763
Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are sets of colors with a total of n elements using exactly k colors.
3
1, 1, 2, 2, 8, 8, 5, 41, 90, 58, 12, 204, 852, 1264, 612, 33, 1046, 7428, 19568, 21510, 8374, 90, 5456, 62682, 262912, 496270, 431040, 140408, 261, 29165, 523167, 3291021, 9520220, 13884960, 9947294, 2785906, 766, 158792, 4358182, 39636784, 165204730, 360421716, 426677440, 259854304, 63830764
OFFSET
1,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
EXAMPLE
Triangle begins:
1;
1, 2;
2, 8, 8;
5, 41, 90, 58;
12, 204, 852, 1264, 612;
33, 1046, 7428, 19568, 21510, 8374;
90, 5456, 62682, 262912, 496270, 431040, 140408;
261, 29165, 523167, 3291021, 9520220, 13884960, 9947294, 2785906;
...
The T(3,2) = 8 trees are: ((1)(12)), ((2)(12)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))).
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k, n)]))[n])); v}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))} \\ Andrew Howroyd, Dec 29 2019
CROSSREFS
Column 1 is A000669.
Main diagonal is A005804.
Row sums are A330764.
Cf. A330762 (leaves are multisets).
Sequence in context: A196066 A334574 A260825 * A138102 A187791 A372260
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 29 2019
STATUS
approved