login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are sets of colors with a total of n elements using exactly k colors.
3

%I #8 Jan 09 2020 19:43:53

%S 1,1,2,2,8,8,5,41,90,58,12,204,852,1264,612,33,1046,7428,19568,21510,

%T 8374,90,5456,62682,262912,496270,431040,140408,261,29165,523167,

%U 3291021,9520220,13884960,9947294,2785906,766,158792,4358182,39636784,165204730,360421716,426677440,259854304,63830764

%N Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are sets of colors with a total of n elements using exactly k colors.

%H Andrew Howroyd, <a href="/A330763/b330763.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)

%e Triangle begins:

%e 1;

%e 1, 2;

%e 2, 8, 8;

%e 5, 41, 90, 58;

%e 12, 204, 852, 1264, 612;

%e 33, 1046, 7428, 19568, 21510, 8374;

%e 90, 5456, 62682, 262912, 496270, 431040, 140408;

%e 261, 29165, 523167, 3291021, 9520220, 13884960, 9947294, 2785906;

%e ...

%e The T(3,2) = 8 trees are: ((1)(12)), ((2)(12)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))).

%o (PARI)

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k,n)]))[n])); v}

%o M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}

%o {my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))} \\ _Andrew Howroyd_, Dec 29 2019

%Y Column 1 is A000669.

%Y Main diagonal is A005804.

%Y Row sums are A330764.

%Y Cf. A330762 (leaves are multisets).

%K nonn,tabl

%O 1,3

%A _Andrew Howroyd_, Dec 29 2019