OFFSET
0,3
FORMULA
T(n, 0) = (2*n - 2) * (T(n-1, 0 + T(n-2, 0)) for n > 1 with initial values T(n, 0) = 1 - n for n < 2 (see A053871).
T(n, k) = (Sum_{i=0..k} binomial(k, i) * T(n-i, 0)) * 2^(2*k) * binomial(n, k) / binomial(2*k, k).
E.g.f. of column k: (exp(-t) / sqrt(1 - 2*t)) * (2*t / (1 - 2*t))^k.
E.g.f.: exp((2*x / (1 - 2*t) - 1) * t) / sqrt(1 - 2*t).
EXAMPLE
Triangle T(n, k) starts:
n\k : 0 1 2 3 4 5 6 7
====================================================================
0 : 1
1 : 0 2
2 : 2 8 8
3 : 8 60 96 48
4 : 60 544 1248 1152 384
5 : 544 6040 17920 24000 15360 3840
6 : 6040 79008 287520 503040 472320 230400 46080
7 : 79008 1190672 5131392 11067840 13655040 9838080 3870720 645120
etc.
MAPLE
T := proc(n, k) option remember; `if`(k > n, 0, `if`(k = n, 2^n * n!, `if`(k = 0, `if`(n < 2, 1 - n, (2*n - 2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) end:
for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 25 2024
MATHEMATICA
T[n_, k_]:=n!SeriesCoefficient[(Exp[-t]/Sqrt[1 - 2*t])*(2*t/(1-2*t))^k, {t, 0, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten (* Stefano Spezia, Apr 25 2024 *)
PROG
(PARI) { T(n, k) = if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1-n,
(2*n-2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) }
(PARI) memo = Map(); memoize(f, A[..]) =
{ my(res);
if(!mapisdefined(memo, [f, A], &res), res = call(f, A);
mapput(memo, [f, A], res)); res; }
T(n, k) =
{ if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1 - n,
(2 * n - 2) * (memoize(T, n-1, k) + memoize(T, n-2, k))),
(memoize(T, n-1, k-1) + memoize(T, n-1, k)) * 2 * n))); }
CROSSREFS
KEYWORD
AUTHOR
Werner Schulte, Apr 24 2024
STATUS
approved