login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372260
Triangle read by rows: T(n, k) = (T(n-1, k-1) + T(n-1, k)) * 2 * n with initial values T(n, 0) = Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * A001147(i) and T(i, j) = 0 if j > i.
0
1, 0, 2, 2, 8, 8, 8, 60, 96, 48, 60, 544, 1248, 1152, 384, 544, 6040, 17920, 24000, 15360, 3840, 6040, 79008, 287520, 503040, 472320, 230400, 46080, 79008, 1190672, 5131392, 11067840, 13655040, 9838080, 3870720, 645120, 1190672, 20314880, 101153024, 259187712, 395566080, 375889920, 219340800, 72253440, 10321920
OFFSET
0,3
FORMULA
T(n, 0) = (2*n - 2) * (T(n-1, 0 + T(n-2, 0)) for n > 1 with initial values T(n, 0) = 1 - n for n < 2 (see A053871).
T(n, k) = (Sum_{i=0..k} binomial(k, i) * T(n-i, 0)) * 2^(2*k) * binomial(n, k) / binomial(2*k, k).
E.g.f. of column k: (exp(-t) / sqrt(1 - 2*t)) * (2*t / (1 - 2*t))^k.
E.g.f.: exp((2*x / (1 - 2*t) - 1) * t) / sqrt(1 - 2*t).
EXAMPLE
Triangle T(n, k) starts:
n\k : 0 1 2 3 4 5 6 7
====================================================================
0 : 1
1 : 0 2
2 : 2 8 8
3 : 8 60 96 48
4 : 60 544 1248 1152 384
5 : 544 6040 17920 24000 15360 3840
6 : 6040 79008 287520 503040 472320 230400 46080
7 : 79008 1190672 5131392 11067840 13655040 9838080 3870720 645120
etc.
MAPLE
T := proc(n, k) option remember; `if`(k > n, 0, `if`(k = n, 2^n * n!, `if`(k = 0, `if`(n < 2, 1 - n, (2*n - 2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) end:
for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 25 2024
MATHEMATICA
T[n_, k_]:=n!SeriesCoefficient[(Exp[-t]/Sqrt[1 - 2*t])*(2*t/(1-2*t))^k, {t, 0, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten (* Stefano Spezia, Apr 25 2024 *)
PROG
(PARI) { T(n, k) = if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1-n,
(2*n-2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) }
(PARI) memo = Map(); memoize(f, A[..]) =
{ my(res);
if(!mapisdefined(memo, [f, A], &res), res = call(f, A);
mapput(memo, [f, A], res)); res; }
T(n, k) =
{ if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1 - n,
(2 * n - 2) * (memoize(T, n-1, k) + memoize(T, n-2, k))),
(memoize(T, n-1, k-1) + memoize(T, n-1, k)) * 2 * n))); }
CROSSREFS
Cf. A053871 (column 0), 2*A179540 (column 1), A000165 (main diagonal).
Cf. A001147.
Sequence in context: A330763 A138102 A187791 * A245235 A151924 A346205
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Apr 24 2024
STATUS
approved