login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292193
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j).
8
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 5, 1, 1, 9, 14, 14, 7, 1, 1, 17, 36, 46, 25, 11, 1, 1, 33, 98, 164, 107, 56, 15, 1, 1, 65, 276, 610, 505, 352, 97, 22, 1, 1, 129, 794, 2324, 2531, 2474, 789, 198, 30, 1, 1, 257, 2316, 8986, 13225, 18580, 7273, 2314, 354, 42
OFFSET
0,6
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j/d)) * A(n-j,k) for n > 0. - Seiichi Manyama, Nov 02 2017
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, ...
3, 6, 14, 36, 98, ...
5, 14, 46, 164, 610, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
`if`(i>n, 0, i^k*b(n-i, i, k))+b(n, i-1, k))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
m = 12;
col[k_] := col[k] = Product[1/(1 - j^k*x^j), {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&;
A[n_, k_] := col[k][[n+1]];
Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)
CROSSREFS
Columns k=0..5 give A000041, A006906, A077335, A265837, A265838, A265839.
Rows 0+1, 2 give A000012, A000051.
Main diagonal gives A292194.
Cf. A292166.
Sequence in context: A050446 A214868 A144048 * A258708 A113983 A199333
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 11 2017
STATUS
approved