login
A265839
Expansion of Product_{k>=1} 1/(1 - k^5*x^k).
5
1, 1, 33, 276, 2324, 13225, 145586, 760057, 6836328, 45996924, 322816122, 2064921330, 16881567137, 96217644312, 708147553326, 4769313137735, 31412238427954, 198869428043476, 1442034056253438, 8596120396405880, 58954590481229064, 387170921610808720
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 3^(5*n/3), where
c = 12.8519823810391431573687005461910113782018563173082562291... if n mod 3 = 0
c = 12.4535903496941652158697054030067622653283880393322526099... if n mod 3 = 1
c = 12.5138855694494734654940524026530463555984202132997900068... if n mod 3 = 2.
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(5*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1 - k^5*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Column k=5 of A292193.
Sequence in context: A179995 A000539 A023874 * A257450 A301549 A020291
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2015
STATUS
approved