login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292194
Sum of n-th powers of products of terms in all partitions of n.
5
1, 1, 5, 36, 610, 13225, 1173652, 92137513, 27960729094, 14612913824364, 11885159817456154, 23676862215173960082, 144210774157588042096815, 778807208565930895328294712, 15863318347221014170216633451982, 908978343753718115412387406378667615
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{k=1..n} 1/(1 - k^n*x^k).
From Vaclav Kotesovec, Sep 15 2017: (Start)
a(n) ~ 3^(n^2/3) if mod(n,3)=0
a(n) ~ 3^(n*(n-4)/3)*2^(2*n+1) if mod(n,3)=1
a(n) ~ 3^(n*(n-2)/3)*2^n if mod(n,3)=2
(End)
EXAMPLE
5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.
So a(5) = 5^5 + (4*1)^5 + (3*2)^5 + (3*1*1)^5 + (2*2*1)^5 + (2*1*1*1)^5 + (1*1*1*1*1)^5 = 13225.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
`if`(i>n, 0, i^k*b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
nmax = 20; Table[SeriesCoefficient[Product[1/(1 - k^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Sep 15 2017 *)
PROG
(PARI) {a(n) = polcoeff(1/prod(k=1, n, 1-k^n*x^k+x*O(x^n)), n)}
CROSSREFS
Main diagonal of A292193.
Cf. A292190.
Sequence in context: A322180 A351019 A252782 * A118018 A318424 A156355
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 11 2017
STATUS
approved