login
A214987
Power round array for the golden ratio, by antidiagonals.
2
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 8, 4, 1, 1, 8, 21, 17, 7, 1, 1, 13, 55, 72, 48, 11, 1, 1, 21, 144, 305, 329, 122, 18, 1, 1, 34, 377, 1292, 2255, 1353, 323, 29, 1, 1, 55, 987, 5473, 15456, 15005, 5796, 842, 47, 1, 1, 89, 2584, 23184, 105937, 166408, 104005
OFFSET
1,5
COMMENTS
The term "power round sequence" (after "power ceiling sequence" at A214986) extends to sequences generated by recurrences P(n) = round(x*P(n-1)) + g(n), and "power round functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0. Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214987, using g(n) = 0, follow:
...
x ... P . .. . . f(x)
r ... A000045 .. 1/2 + 3*sqrt(5)/10 = 1.1708... (A176015)
r^2 . A001906 .. 1/2 + 3*sqrt(5)/10 = 1.1708... (A176015)
r^3 . A001076 .. 1/2 + sqrt(5)/5 = 0.9472...
r^4 . A004187 .. 1/2 + 7*sqrt(5)/30 = 1.0217...
In general, f(r^k) = 1/2 + sqrt(5)*L(k)/(10*F(k)) for k>1, where L = A000032 (Lucas numbers) and F = A000045 (Fibonacci numbers).
(row 2 of A214987) = (row 1 of A213978 except for its initial 1)
(row n of A214987) = (row n-1 of A213978 for n>2).
LINKS
EXAMPLE
1...1...1....1.....1......1
1...2...3....5.....8......13
1...3...8....21....5......144
1...4...17...72....305....1292
1...7...48...329...2255...15456
MATHEMATICA
r = GoldenRatio;
s[x_, 0] := 1; s[x_, n_] := Round[x*s[x, n - 1]];
t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}] ]
u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Oct 28 2012
STATUS
approved