OFFSET
1,5
COMMENTS
The term "power round sequence" (after "power ceiling sequence" at A214986) extends to sequences generated by recurrences P(n) = round(x*P(n-1)) + g(n), and "power round functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0. Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214987, using g(n) = 0, follow:
...
x ... P . .. . . f(x)
r^3 . A001076 .. 1/2 + sqrt(5)/5 = 0.9472...
r^4 . A004187 .. 1/2 + 7*sqrt(5)/30 = 1.0217...
LINKS
Clark Kimberling, Antidiagonals n = 1..35, flattened
EXAMPLE
1...1...1....1.....1......1
1...2...3....5.....8......13
1...3...8....21....5......144
1...4...17...72....305....1292
1...7...48...329...2255...15456
MATHEMATICA
r = GoldenRatio;
s[x_, 0] := 1; s[x_, n_] := Round[x*s[x, n - 1]];
t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}] ]
u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Oct 28 2012
STATUS
approved