login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214985
Array: T(m,n) = (F(n) + F(2*n) + ... + F(n*m))/F(n), by antidiagonals; transpose of A214984.
2
1, 1, 2, 1, 4, 4, 1, 5, 12, 7, 1, 8, 22, 33, 12, 1, 12, 56, 94, 88, 20, 1, 19, 134, 385, 399, 232, 33, 1, 30, 342, 1487, 2640, 1691, 609, 54, 1, 48, 872, 6138, 16492, 18096, 7164, 1596, 88, 1, 77, 2256, 25319, 110143, 182900, 124033, 30348, 4180, 143
OFFSET
1,3
COMMENTS
row 1: A001612 (except for initial term)
col 1: A000071
col 2: A027941
col 3: A049652
col 4: A092521
col 6: A049664
col 8: A156093 without minus signs
LINKS
FORMULA
For odd-numbered columns (m odd):
T(m,n) = (F(m*n+m) + F(m*n) - F(m))/(F(m)*L(m)).
For even-numbered columns (m even):
T(m,n) = (F(m*n+m) - F(m*n) - F(m))/(F(m)*(L(m)-1)).
EXAMPLE
Northwest corner:
1....1.....1......1.......1
2....4.....5......8.......12
4....12....22.....56......134
7....33....94.....385.....1487
12...88....399....2640....16492
20...232...1691...18096...182900
MATHEMATICA
F[n_] := Fibonacci[n]; L[n_] := LucasL[n];
t[m_, n_] := (1/F[n])*Sum[F[k*n], {k, 1, m}]
TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]]
Flatten[Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Oct 28 2012
STATUS
approved