login
A214985
Array: T(m,n) = (F(n) + F(2*n) + ... + F(n*m))/F(n), by antidiagonals; transpose of A214984.
2
1, 1, 2, 1, 4, 4, 1, 5, 12, 7, 1, 8, 22, 33, 12, 1, 12, 56, 94, 88, 20, 1, 19, 134, 385, 399, 232, 33, 1, 30, 342, 1487, 2640, 1691, 609, 54, 1, 48, 872, 6138, 16492, 18096, 7164, 1596, 88, 1, 77, 2256, 25319, 110143, 182900, 124033, 30348, 4180, 143
OFFSET
1,3
COMMENTS
row 1: A001612 (except for initial term)
col 1: A000071
col 2: A027941
col 3: A049652
col 4: A092521
col 6: A049664
col 8: A156093 without minus signs
LINKS
FORMULA
For odd-numbered columns (m odd):
T(m,n) = (F(m*n+m) + F(m*n) - F(m))/(F(m)*L(m)).
For even-numbered columns (m even):
T(m,n) = (F(m*n+m) - F(m*n) - F(m))/(F(m)*(L(m)-1)).
EXAMPLE
Northwest corner:
1....1.....1......1.......1
2....4.....5......8.......12
4....12....22.....56......134
7....33....94.....385.....1487
12...88....399....2640....16492
20...232...1691...18096...182900
MATHEMATICA
F[n_] := Fibonacci[n]; L[n_] := LucasL[n];
t[m_, n_] := (1/F[n])*Sum[F[k*n], {k, 1, m}]
TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]]
Flatten[Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Oct 28 2012
STATUS
approved