OFFSET
1,3
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n = 1..60, flattened
FORMULA
For odd-numbered columns (m odd):
T(m,n) = (F(m*n+m) + F(m*n) - F(m))/(F(m)*L(m)).
For even-numbered columns (m even):
T(m,n) = (F(m*n+m) - F(m*n) - F(m))/(F(m)*(L(m)-1)).
EXAMPLE
Northwest corner:
1....1.....1......1.......1
2....4.....5......8.......12
4....12....22.....56......134
7....33....94.....385.....1487
12...88....399....2640....16492
20...232...1691...18096...182900
MATHEMATICA
F[n_] := Fibonacci[n]; L[n_] := LucasL[n];
t[m_, n_] := (1/F[n])*Sum[F[k*n], {k, 1, m}]
TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]]
Flatten[Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Oct 28 2012
STATUS
approved