OFFSET
1,1
COMMENTS
Numbers k such that floor(sqrt(k)+1/2) does not divide k. - Wesley Ivan Hurt, Dec 01 2020
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n + A027434(n).
Other identities and observations. For all n >= 1:
A237347(a(n)) = 2. - Reinhard Zumkeller, Mar 18 2014
A240025(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2014
a(n) = A080037(n) - 1. - Peter Kagey, Dec 08 2015
G.f.: x/(1-x)^2 + Sum_{k>=0} (x^(1+k^2)*(1+x^k))/(1-x)
= (x*Theta3(x)+ x^(3/4)*Theta2(x))/(2-2*x) + (3-x)*x/(2*(1-x)^2) where Theta3 and Theta2 are Jacobi Theta functions. - Robert Israel, Dec 09 2015
MAPLE
MATHEMATICA
max = 100; Complement[Range[0, max], Table[Quotient[n^2, 4], {n, 0, 2*Sqrt[max]}]] (* Jean-François Alcover, Apr 18 2013 *)
Table[n + Ceiling[2 * Sqrt[n]], {n, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *)
PROG
(PARI) {a(n) = if( n<1, 0, n+1 + sqrtint(4*n - 3))} /* Michael Somos, Oct 16 2006 */
(Haskell)
a049068 n = a049068_list !! (n-1)
a049068 = filter ((== 0) . a240025) [0..]
-- Reinhard Zumkeller, Jul 05 2014, Mar 18 2014, May 08 2012
(Magma) [n+Ceiling(2*Sqrt(n)): n in [1..70]]; // Vincenzo Librandi, Dec 09 2015
(Python)
from math import isqrt
def A049068(n): return n+1+isqrt((n<<2)-1) # Chai Wah Wu, Jul 27 2022
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Michael Somos, Aug 06 1999
STATUS
approved