login
A257019
Numbers whose quarter-square representation consists of two terms.
10
3, 5, 7, 8, 10, 11, 13, 14, 17, 18, 21, 22, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 43, 44, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 65, 66, 68, 70, 73, 74, 76, 78, 82, 83, 85, 87, 91, 92, 94, 96, 99, 101, 102, 104, 106, 109, 111, 112, 114, 116, 119, 122, 123
OFFSET
1,1
COMMENTS
Every positive integer is a sum of at most four distinct quarter squares (see A257019).
LINKS
EXAMPLE
Quarter-square representations:
r(0) = 0, one term
r(1) = 1, one term
r(3) = 2 + 1, two terms, so a(1) = 3
MATHEMATICA
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}];
s[n_] := Table[b[n], {k, b[n + 1] - b[n]}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]];
u = Table[Length[r[n]], {n, 0, 4 z}]; (* A257023 *)
Flatten[-1 + Position[u, 1]]; (* A002620 *)
Flatten[-1 + Position[u, 2]]; (* A257019 *)
Flatten[-1 + Position[u, 3]]; (* A257020 *)
Flatten[-1 + Position[u, 4]]; (* A257021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2015
STATUS
approved