login
A030140
The nonsquares squared.
7
4, 9, 25, 36, 49, 64, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400, 441, 484, 529, 576, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025
OFFSET
1,1
COMMENTS
The complement of the fourth powers A000583 within the squares A000290. - Peter Munn, Aug 20 2019
LINKS
FORMULA
a(n) = A000037(n)^2.
Sum_{n>=1} 1/a(n) = zeta(2) - zeta(4) = A013661 - A013662 = 0.5626108331... - Amiram Eldar, Nov 14 2020
{a(n) : n >= 1} = {A225546(6m+3) : m >= 0}. - Peter Munn, Nov 17 2022
EXAMPLE
a(1)=2^2, a(2)=3^2, a(3)=5^2, a(4)=6^2, a(5)=7^2, ..., a(n)=(integer which is not a perfect square)^2.
MAPLE
a:=proc(n) if type(sqrt(n), integer)=false then n^2 else fi end: seq(a(n), n=1..70); # Emeric Deutsch, Apr 11 2007
MATHEMATICA
a[n_] := (n + Floor[1/2 + Sqrt[n]])^2;
Array[a, 50] (* Jean-François Alcover, Apr 05 2020 *)
PROG
(Magma) [(n + Floor(1/2 + Sqrt(n)))^2: n in [1..60]]; // Vincenzo Librandi, Apr 06 2020
(Python)
from math import isqrt
def A030140(n): return (n+(k:=isqrt(n))+int(n>=k*(k+1)+1))**2 # Chai Wah Wu, Jun 17 2024
CROSSREFS
Positions of 2's in A352080.
Related to A016945 via A225546.
Sequence in context: A360902 A365003 A367406 * A374458 A325240 A355058
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
STATUS
approved