login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A030139
a(n+1) = sum of digits of (a(n) + a(n-1)).
0
1, 4, 5, 9, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 9, 4, 4, 8, 3, 2, 5, 7, 3, 1, 4, 5, 9, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 9, 4, 4, 8, 3, 2, 5, 7, 3, 1, 4, 5, 9, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 9, 4, 4, 8, 3, 2, 5, 7, 3, 1, 4, 5, 9, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 9, 4, 4, 8, 3, 2, 5, 7, 3, 1, 4, 5
OFFSET
0,2
COMMENTS
This is also the digital root of A022378, Fibonacci starting with 2 and 32, beginning from the 20th term 2: [2, 5, 7, 3, 1, 4, 5, 9, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 9, 4, 4, 8, 3.] Like the digital root of A000045, sequence is period 24, and likewise, its period also adds up to 117.Peter M. Chema, Apr 28 2016
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: (1+4*x+5*x^2+9*x^3+5*x^4+5*x^5+x^6+6*x^7+7*x^8+4*x^9+2*x^10+6*x^11+8*x^12+5*x^13+4*x^14+9*x^15+4*x^16+4*x^17+8*x^18+3*x^19+2*x^20+5*x^21+7*x^22+3*x^23)/(1-x^24). - Robert Israel, Apr 28 2016
MAPLE
A[0]:= 1: A[1]:= 4:
for i from 2 to 100 do
t:= A[i-2]+A[i-1];
A[i]:=(t + 9*(t mod 10))/10;
od:
seq(A[i], i=0..100); # Robert Israel, Apr 28 2016
MATHEMATICA
a[0] = 1; a[1] = 4; a[n_] := a[n] = Total@ IntegerDigits[a[n - 1] + a[n - 2]]; Table[a@ n, {n, 0, 120}] (* Michael De Vlieger, Apr 28 2016 *)
nxt[{a_, b_}]:={b, Total[IntegerDigits[a+b]]}; NestList[nxt, {1, 4}, 100][[All, 1]] (* or *) PadRight[{}, 100, {1, 4, 5, 9, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 9, 4, 4, 8, 3, 2, 5, 7, 3}] (* Harvey P. Dale, Apr 27 2018 *)
PROG
(PARI) a(n)=n=n%24; my(a=3, b=1); while(n, [a, b]=[b, sumdigits(a+b)]; n--); b \\ Charles R Greathouse IV, Apr 28 2016
CROSSREFS
Sequence in context: A010667 A371336 A016722 * A356509 A371936 A069228
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved