login
A082987
a(n) = Sum_{k=0..n} 3^k*F(k) where F(k) is the k-th Fibonacci number.
2
0, 3, 12, 66, 309, 1524, 7356, 35787, 173568, 842790, 4090485, 19856568, 96384072, 467861331, 2271040644, 11023873914, 53510987541, 259747827852, 1260842371428, 6120257564955, 29708354037720, 144207380197758
OFFSET
0,2
FORMULA
a(0)=0, a(1)=3, a(2)=12, a(n)=4a(n-1)+6a(n-2)-9a(n-3).
G.f.: 3*x / ((x-1)*(9*x^2+3*x-1)). - Colin Barker, Jun 26 2013
MATHEMATICA
LinearRecurrence[{4, 6, -9}, {0, 3, 12}, 30] (* Harvey P. Dale, Feb 03 2019 *)
PROG
(PARI) a(n)=if(n<0, 0, sum(k=0, n, fibonacci(k)*3^k))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, May 29 2003
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Oct 03 2023
STATUS
approved