login
A080159
Triangular array of ways of drawing k non-intersecting chords between n points on a circle; i.e., Motzkin polynomial coefficients.
4
1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 2, 0, 0, 1, 10, 10, 0, 0, 0, 1, 15, 30, 5, 0, 0, 0, 1, 21, 70, 35, 0, 0, 0, 0, 1, 28, 140, 140, 14, 0, 0, 0, 0, 1, 36, 252, 420, 126, 0, 0, 0, 0, 0, 1, 45, 420, 1050, 630, 42, 0, 0, 0, 0, 0, 1, 55, 660, 2310, 2310, 462, 0, 0, 0, 0, 0, 0, 1, 66, 990, 4620
OFFSET
0,8
FORMULA
For n >= 2k: T(n, k) = n!/((n-2k)!k!(k+1)!) = A007318(n, 2k)*A000108(k).
T(n,k) = A055151(n,k).
EXAMPLE
Rows start: 1; 1,0; 1,1,0; 1,3,0,0; 1,6,2,0,0; 1,10,10,0,0,0; 1,15,30,5,0,0,0; etc.
CROSSREFS
Visible version of A055151. Row sums are A001006 (Motzkin numbers). Columns include A000012, A000217, A034827 and perhaps A000910.
Sequence in context: A293616 A211649 A202023 * A144299 A060514 A176788
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Jan 31 2003
STATUS
approved