login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212089
Number of (w,x,y,z) with all terms in {1,...,n} and w>=average{x,y,z}.
2
0, 1, 9, 45, 139, 333, 684, 1258, 2133, 3402, 5167, 7542, 10656, 14647, 19665, 25875, 33451, 42579, 53460, 66304, 81333, 98784, 118903, 141948, 168192, 197917, 231417, 269001, 310987, 357705, 409500, 466726, 529749, 598950, 674719
OFFSET
0,3
COMMENTS
Also, number of (w,x,y,z) with all terms in {1,...,n} and w<=average{x,y,z}.
a(n)+A212088(n)=n^4.
For a guide to related sequences, see A211795.
FORMULA
a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-5*a(n-4)+6*a(n-5)-4*a(n-6)+a(n-7).
G.f.: x*(1+7*x^4+8*x^3+15*x^2+5*x) / ((x^2+x+1)*(-x+1)^5). - Alois P. Heinz, May 18 2012
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w >= x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212088 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{4, -6, 5, -5, 6, -4, 1}, {0, 1, 9, 45, 139, 333, 684}, 35] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 01 2012
STATUS
approved