|
|
A188655
|
|
Decimal expansion of (2+sqrt(13))/3.
|
|
1
|
|
|
1, 8, 6, 8, 5, 1, 7, 0, 9, 1, 8, 2, 1, 3, 2, 9, 7, 6, 4, 3, 7, 3, 0, 7, 3, 7, 5, 5, 8, 2, 3, 4, 9, 8, 6, 4, 8, 7, 5, 0, 4, 3, 2, 1, 9, 1, 2, 8, 1, 7, 4, 8, 7, 3, 7, 5, 7, 0, 1, 5, 1, 0, 1, 8, 7, 4, 2, 3, 8, 8, 9, 8, 2, 7, 6, 4, 3, 3, 6, 8, 1, 5, 0, 6, 8, 2, 0, 6, 3, 6, 0, 6, 7, 2, 8, 3, 0, 2, 3, 9, 2, 2, 4, 5, 0, 4, 7, 2, 7, 3, 4, 1, 3, 5, 4, 5, 1, 3, 4, 5, 8, 6, 7, 6, 8, 9, 2, 7, 5, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Decimal expansion of the length/width ratio of a (4/3)-extension rectangle.
See A188640 for definitions of shape and r-extension rectangle.
A (4/3)-extension rectangle matches the continued fraction [1,1,6,1,1,1,1,6,1,1,1,1,6,...] for the shape L/W= (2+sqrt(13))/3. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for the (4/3)-extension rectangle, 1 square is removed first, then 1 square, then 6 squares, then 1 square, then 1 square,..., so that the original rectangle is partitioned into an infinite collection of squares.
|
|
LINKS
|
Table of n, a(n) for n=1..130.
Clark Kimberling, A Visual Euclidean Algorithm, The Mathematics Teacher 76 (1983) 108-109.
|
|
EXAMPLE
|
length/width = 1.868517091821329764373....
|
|
MATHEMATICA
|
r = 4/3; t = (r + (4 + r^2)^(1/2))/2; RealDigits[ N[ FullSimplify@ t, 111]][[1]]
RealDigits[(2 + Sqrt@ 13)/3, 10, 111][[1]] (* Or *)
RealDigits[Exp@ ArcSinh[2/3], 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)
|
|
CROSSREFS
|
Cf. A188640, A010122.
Sequence in context: A159627 A302682 A011298 * A282152 A191909 A247559
Adjacent sequences: A188652 A188653 A188654 * A188656 A188657 A188658
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Apr 09 2011
|
|
EXTENSIONS
|
a(130) corrected by Georg Fischer, Apr 01 2020
|
|
STATUS
|
approved
|
|
|
|