login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188652
First differences of A000463.
5
0, 1, 2, -1, 6, -5, 12, -11, 20, -19, 30, -29, 42, -41, 56, -55, 72, -71, 90, -89, 110, -109, 132, -131, 156, -155, 182, -181, 210, -209, 240, -239, 272, -271, 306, -305, 342, -341, 380, -379, 420, -419, 462, -461, 506, -505, 552, -551, 600, -599, 650, -649, 702, -701, 756, -755, 812, -811, 870, -869, 930, -929, 992, -991, 1056, -1055, 1122, -1121, 1190, -1189, 1260, -1259, 1332, -1331, 1406
OFFSET
1,3
FORMULA
a(2n) = 1 - a(2n-1), a(2n+1) = 2*n + 1 - a(2n).
a(n) = A000463(n+1) - A000463(n).
a(2n-1) = A002378(n-1), a(2n) = - A165900(n).
G.f.: -x^2*(-1-3*x+x^2+x^3) / ( (x-1)^2*(1+x)^3 ). - R. J. Mathar, Apr 14 2011
a(n) = (2*n+3-(2*n^2-2*n-5)*(-1)^n)/8. - Luce ETIENNE, Dec 18 2014
E.g.f.: ((4 + x - x^2)*cosh(x) - (1 - x - x^2)*sinh(x) - 4)/4. - Stefano Spezia, Jul 08 2023
MATHEMATICA
Differences[Flatten[Array[{#, #^2}&, 40]]] (* Harvey P. Dale, Aug 04 2012 *)
PROG
(Haskell)
a188652 n = a188652_list !! (n-1)
a188652_list = zipWith (-) (tail a000463_list) a000463_list
CROSSREFS
Cf. A188653 (first differences).
Sequence in context: A292667 A030770 A307048 * A333958 A114852 A188048
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Apr 13 2011
STATUS
approved