login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188651
Products of two primes (i.e., "semiprimes") that are the sum of three consecutive primes.
2
10, 15, 49, 121, 143, 159, 187, 235, 287, 301, 319, 329, 371, 395, 407, 471, 519, 533, 551, 565, 581, 589, 633, 679, 689, 713, 731, 749, 771, 789, 803, 817, 841, 961, 985, 1079, 1099, 1119, 1135, 1169, 1207, 1271, 1285, 1315, 1349, 1391, 1457, 1477, 1585
OFFSET
1,1
COMMENTS
Or, semiprimes in A034961 (Sums of three consecutive primes).
Subsequence of square semiprimes: {49, 121, 841, 961, 1849, 22801, 24649, 36481, 69169, ...} = {7, 11, 29, 31, 43, 151, 157, 191, 263, ...}^2 that is also a subsequence of A080665 (Squares in A034961). Cf. also A034962 (Primes A034961).
Somewhat surprisingly, the sum of two consecutive primes is never a semiprime. This follows from that fact that if p+q = 2r for primes p,q,r, then r must between p and q. So if p and q are consecutive, then r does not exist.
EXAMPLE
a(1) = 10 = 2*5 = A034961(1) = prime(1) + prime(2) + prime(3) = 2 + 3 + 5,
a(2) = 15 = 3*5 = A034961(2) = prime(2) + prime(3) + prime(4) = 3 + 5 + 7,
a(3) = 49 = 7*7 = A080665(1) = A034961(6) = prime(6) + prime(7) + prime(8) = 13 + 17 + 19.
MATHEMATICA
semiPrimeQ[n_Integer] := Total[FactorInteger[n]][[2]] == 2; Select[Total /@ Partition[Prime[Range[100]], 3, 1], semiPrimeQ] (* T. D. Noe, Apr 20 2011 *)
CROSSREFS
Sequence in context: A259629 A212794 A048061 * A330203 A272307 A092192
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 16 2011
STATUS
approved