login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080665
Squares that are the sum of 3 consecutive primes.
6
49, 121, 841, 961, 1849, 22801, 24649, 36481, 43681, 47089, 48841, 69169, 96721, 128881, 134689, 165649, 243049, 284089, 316969, 319225, 405769, 609961, 664225, 677329, 707281, 737881, 776161, 863041, 919681, 994009, 1026169, 1038361
OFFSET
1,1
COMMENTS
Sum of reciprocals converges to 0.0317...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A076304(n)^2. - Zak Seidov, May 26 2013
EXAMPLE
13+17+19 = 49
MATHEMATICA
PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{m = Floor[n/3], t = 1}, If[PrimeQ[m], s = PrevPrim[m] + m + NextPrim[m], s = PrevPrim[ PrevPrim[m]] + PrevPrim[m] + NextPrim[m]; t = PrevPrim[m] + NextPrim[m] + NextPrim[ NextPrim[m]]]; If[s == n || t == n, True, False]]; Select[ Range[1020], f[ #^2] &]^2
PROG
(PARI) sump1p2p3sq(n)= {sr=0; forprime(x=2, n, y=x+nextprime(x+1)+nextprime(nextprime(x+1)+1); if(issquare(y), print1(y" "); sr+=1.0/y; ) ); print(); print(sr) }
(PARI) for(n=1, 1e4, p=precprime(n^2/3); q=nextprime(p+1); t=n^2-p-q; if(isprime(t) && t==if(t>q, nextprime(q+1), precprime(p-1)), print1(n^2", "))) \\ Charles R Greathouse IV, May 26 2013
CROSSREFS
Cf. A062703.
Sequence in context: A374290 A115557 A167718 * A130007 A378629 A202331
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Mar 02 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Mar 02 2003
Offset corrected by Zak Seidov, May 26 2013
STATUS
approved