login
A374290
7-rough powerful numbers: numbers k coprime to 30 such that if a prime p divides k then p^2 also divides k.
2
1, 49, 121, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2401, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 5929, 6241, 6859, 6889, 7921, 8281, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14161, 14641, 16129, 16807, 17161, 17689, 18769
OFFSET
1,2
COMMENTS
This sequence is closed under multiplication.
The least term that is not a power of a prime (A000961) is a(25) = 7^2*11^2 = 5929.
FORMULA
Sum_{n>=1} 1/a(n) = 80*zeta(2)*zeta(3)/(147*zeta(6)) = (80/147) * A082695 = 1.05773955745... .
In general, the sum of reciprocals of the p-rough powerful numbers is (zeta(2)*zeta(3)/zeta(6)) * Product_{prime q < p} ((q-1)*q/(q^2-q+1)).
MATHEMATICA
powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[20000], CoprimeQ[#, 30] && powQ[#] &]
PROG
(PARI) is(k) = gcd(k, 30) == 1 && ispowerful(k);
CROSSREFS
Intersection of A007775 and A001694.
Intersection of A229829 and A062739.
Intersection of A047201 and A374289.
Sequence in context: A338499 A227863 A339131 * A115557 A167718 A080665
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jul 02 2024
STATUS
approved