login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares that are the sum of 3 consecutive primes.
6

%I #10 Oct 01 2013 17:57:35

%S 49,121,841,961,1849,22801,24649,36481,43681,47089,48841,69169,96721,

%T 128881,134689,165649,243049,284089,316969,319225,405769,609961,

%U 664225,677329,707281,737881,776161,863041,919681,994009,1026169,1038361

%N Squares that are the sum of 3 consecutive primes.

%C Sum of reciprocals converges to 0.0317...

%H Charles R Greathouse IV, <a href="/A080665/b080665.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A076304(n)^2. - _Zak Seidov_, May 26 2013

%e 13+17+19 = 49

%t PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{m = Floor[n/3], t = 1}, If[PrimeQ[m], s = PrevPrim[m] + m + NextPrim[m], s = PrevPrim[ PrevPrim[m]] + PrevPrim[m] + NextPrim[m]; t = PrevPrim[m] + NextPrim[m] + NextPrim[ NextPrim[m]]]; If[s == n || t == n, True, False]]; Select[ Range[1020], f[ #^2] &]^2

%o (PARI) sump1p2p3sq(n)= {sr=0; forprime(x=2,n, y=x+nextprime(x+1)+nextprime(nextprime(x+1)+1); if(issquare(y),print1(y" "); sr+=1.0/y; ) ); print(); print(sr) }

%o (PARI) for(n=1,1e4,p=precprime(n^2/3);q=nextprime(p+1);t=n^2-p-q;if(isprime(t) && t==if(t>q,nextprime(q+1),precprime(p-1)), print1(n^2", "))) \\ _Charles R Greathouse IV_, May 26 2013

%Y Cf. A062703.

%K nonn,easy

%O 1,1

%A _Cino Hilliard_, Mar 02 2003

%E Edited and extended by _Robert G. Wilson v_, Mar 02 2003

%E Offset corrected by _Zak Seidov_, May 26 2013