login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by antidiagonals up: T(n,k) = -(n-1) if n divides k, else 1.
5

%I #14 Dec 10 2016 17:13:12

%S 0,1,0,1,-1,0,1,1,1,0,1,1,-2,-1,0,1,1,1,1,1,0,1,1,1,-3,1,-1,0,1,1,1,1,

%T 1,-2,1,0,1,1,1,1,-4,1,1,-1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,-5,1,-3,

%U -2,-1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,-6,1,1,1,1,-1,0,1,1,1,1,1,1,1,1,1,-4,1,-2,1,0,1,1,1,1,1,1,1,-7,1,1,1,-3,1,-1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0

%N Square array read by antidiagonals up: T(n,k) = -(n-1) if n divides k, else 1.

%C Apart from the top row, the same as A177121.

%C Sum_{k>=1} T(n,k)/k = log(n); this has been pointed out by _Jaume Oliver Lafont_ in A061347 and A002162.

%F If n divides k then T(n,k) = -(n-1) else 1.

%e Table starts:

%e 0..0..0..0..0..0..0..0..0...

%e 1.-1..1.-1..1.-1..1.-1..1...

%e 1..1.-2..1..1.-2..1..1.-2...

%e 1..1..1.-3..1..1..1.-3..1...

%e 1..1..1..1.-4..1..1..1..1...

%e 1..1..1..1..1.-5..1..1..1...

%e 1..1..1..1..1..1.-6..1..1...

%e 1..1..1..1..1..1..1.-7..1...

%e 1..1..1..1..1..1..1..1.-8...

%t Clear[t, n, k];

%t nn = 30;

%t t[n_, k_] := t[n, k] = If[Mod[n, k] == 0, -(k - 1), 1]

%t MatrixForm[Transpose[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]]

%o (PARI) N=20; M=matrix(N,N,n,k, if(n%k==0,1-k,1))~

%Y Cf. A002162, A002391, A016627, A191904.

%K sign,tabl

%O 1,13

%A _Mats Granvik_, Jun 19 2011