The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175184 Pisano period length of the 5-Fibonacci numbers, A052918 preceded by 0. 6
 1, 3, 8, 6, 2, 24, 6, 12, 8, 6, 24, 24, 12, 6, 8, 24, 36, 24, 40, 6, 24, 24, 22, 24, 10, 12, 8, 6, 116, 24, 64, 48, 24, 36, 6, 24, 76, 120, 24, 12, 28, 24, 88, 24, 8, 66, 96, 24, 42, 30, 72, 12, 52, 24, 24, 12, 40, 348, 58, 24, 124, 192, 24, 96, 12, 24, 66, 36, 88, 6, 70, 24, 148 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Period length of the sequence defined by reading A052918 modulo n. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos, Solit. Fractals 41 (2009), 497-504. Eric Weisstein's World of Mathematics, Pisano period. Wikipedia, Pisano period. MAPLE F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc: Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc: k := 5 ; seq( Pper(k, m), m=1..80) ; MATHEMATICA Table[s = t = Mod[{0, 1}, n]; cnt = 1; While[tmp = Mod[5*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* Vincenzo Librandi, Dec 20 2012, after T. D. Noe *) CROSSREFS Cf. A001175, A175181, A175182, A175183, A175184, A175185. Sequence in context: A246727 A081803 A016627 * A019604 A336079 A214726 Adjacent sequences:  A175181 A175182 A175183 * A175185 A175186 A175187 KEYWORD nonn,easy AUTHOR R. J. Mathar, Mar 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 02:21 EDT 2021. Contains 343909 sequences. (Running on oeis4.)