login
A020759
Decimal expansion of (-1)*Gamma'(1/2)/Gamma(1/2) where Gamma(x) denotes the Gamma function.
17
1, 9, 6, 3, 5, 1, 0, 0, 2, 6, 0, 2, 1, 4, 2, 3, 4, 7, 9, 4, 4, 0, 9, 7, 6, 3, 3, 2, 9, 9, 8, 7, 5, 5, 5, 6, 7, 1, 9, 3, 1, 5, 9, 6, 0, 4, 6, 6, 0, 4, 3, 4, 1, 0, 7, 0, 4, 7, 1, 2, 7, 2, 5, 3, 8, 7, 1, 6, 5, 4, 9, 7, 0, 7, 1, 7, 0, 5, 4, 1, 0, 2, 1, 4, 8, 6, 7, 3, 7, 1, 7, 2, 8, 4, 5, 8, 4, 1, 2, 4, 5, 9, 8, 6, 3
OFFSET
1,2
COMMENTS
Decimal expansion of -psi(1/2). - Benoit Cloitre, Mar 07 2004
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), 6.3.3, p. 258. - Robert G. Wilson v, Jun 20 2011
S. J. Patterson, An introduction to the theory of the Riemann zeta function, Cambridge studies in advanced mathematics no. 14, p. 135.
FORMULA
Gamma'(1/2)/Gamma(1/2) = -EulerGamma - 2*log(2) = -1.9635100260214234794... where EulerGamma is the Euler-Mascheroni constant (A001620).
Equals 2 - psi(-1/2) = 2-A248176. - Stanislav Sykora, Oct 03 2014
Equals A131265/A002161. - R. J. Mathar, Jun 02 2022
Equals lim_{n->oo} (Sum_{k=0..n} 1/(k+1/2) - log(n)). - Amiram Eldar, Mar 04 2023
EXAMPLE
1.96351002602142347944097633299875556719315960466...
MAPLE
evalf(-Psi(0.5)) ; # R. J. Mathar, Sep 10 2013
MATHEMATICA
RealDigits[ EulerGamma + 2 Log[2], 10, 111][[1]] (* Robert G. Wilson v, Jun 20 2011 *)
PROG
(PARI) Euler+2*log(2)
(PARI) 2-psi(-1/2) \\ Stanislav Sykora, Oct 03 2014
(Magma) R:=RealField(100); EulerGamma(R) + 2*Log(2); // G. C. Greubel, Aug 27 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, May 24 2003
STATUS
approved