login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248176
Decimal expansion of psi(-1/2).
2
0, 3, 6, 4, 8, 9, 9, 7, 3, 9, 7, 8, 5, 7, 6, 5, 2, 0, 5, 5, 9, 0, 2, 3, 6, 6, 7, 0, 0, 1, 2, 4, 4, 4, 3, 2, 8, 0, 6, 8, 4, 0, 3, 9, 5, 3, 3, 9, 5, 6, 5, 8, 9, 2, 9, 5, 2, 8, 7, 2, 7, 4, 6, 1, 2, 8, 3, 4, 5, 0, 2, 9, 2, 8, 2, 9, 4, 5, 8, 9, 7, 8, 5, 1, 3, 2, 6, 2, 8, 2, 7, 1, 5, 4, 1, 5, 8, 7, 5, 4, 0, 1, 3, 6, 5, 5, 9, 0
OFFSET
0,2
COMMENTS
Psi denotes the digamma function.
LINKS
Wikipedia, Digamma function.
FORMULA
Equals 2 + psi(1/2) = 2 - 2*log(2) - EulerGamma = 2 - A020759, (since psi(1 + x) = psi(x) + 1/x).
Equals PolyGamma(3/2). - Peter Luschny, Apr 14 2020
Equals Sum_{k>=1} (zeta(2*k+1)-1)/((k+1)*(2*k+1)). - Amiram Eldar, May 24 2021
Equals 4*Pi*Integral_{x>=0} (log(1 + i*x) / (exp(-Pi*x) + exp(Pi*x))^2). - Peter Luschny, Aug 04 2021
Equals lim_{n->oo} (log(n) - Sum_{k=1..n} 1/(k+1/2)). - Amiram Eldar, Mar 04 2023
EXAMPLE
0.0364899739785765205590236670012444328068403953395658929528727461...
MATHEMATICA
RealDigits[2 - (EulerGamma + 2Log[2]), 10, 100][[1]] (* Alonso del Arte, Oct 03 2014 *)
PROG
(PARI) psi(-1/2)
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 2 - (2*Log(2) + EulerGamma(R)); // G. C. Greubel, Aug 30 2018
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Oct 03 2014
STATUS
approved