login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248174
2-adic order of the tribonacci sequence.
2
0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 6, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 4, 0, 0, 6, 4, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 7, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 0, 0, 7, 5, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 6, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 4, 0, 0, 6, 4, 0, 0, 1, 2, 0, 0, 3, 2
OFFSET
1,4
LINKS
Diego Marques and Tamás Lengyel, The 2-adic order of the Tribonacci numbers and the equation T_n = m!, Journal of Integer Sequences, Vol. 17 (2014), Article 14.10.1.
FORMULA
a(n) = A007814(A000073(n+1)). - Michel Marcus, Oct 03 2014
From Amiram Eldar, Jan 29 2021: (Start)
The following 7 formulas completely specify the sequence (Marques and Lengyel, 2014):
1. a(n) = 0 if n == 1 (mod 4) or n == 2 (mod 4).
2. a(n) = 1 if n == 3 (mod 16) or n == 11 (mod 16).
3. a(n) = 2 if n == 4 (mod 16) or n == 8 (mod 16).
4. a(n) = 3 if n == 7 (mod 16).
5. a(n) = A007814(n) - 1 if n == 0 (mod 16).
6. a(n) = A007814(n+4) - 1 if n == 12 (mod 16).
7. a(n) = A007814((n+1)*(n+17)) - 3 if n == 15 (mod 16).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 3/2. (End)
EXAMPLE
For n = 7 we have T_7 = A000073(8) = 24 and the highest power of 2 dividing T_7 is 8 = 2^3.
MAPLE
b:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n. <<0, 1, 1>>)[1, 1]:
a:= n-> padic[ordp](b(n), 2):
seq(a(n), n=1..120); # Alois P. Heinz, Oct 03 2014
MATHEMATICA
IntegerExponent[LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 100], 2] (* Amiram Eldar, Jan 29 2021 *)
CROSSREFS
Sequence in context: A319668 A167634 A174169 * A125095 A113411 A260110
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Oct 03 2014
STATUS
approved